Backdoor Set Detection for 3CNF Formulas

Andrew Kaploun, Supervised By Serge Gaspers

School of Computer Science University of New South Wales, Sydney

Thesis A, Trimester 3 2019

 \leftarrow \Box

 299

[Preliminary Results](#page-26-0)

Þ

Ξ

 \leftarrow \Box

∢母→

 299

Algorithms

- Input of size $n \in \mathbb{N}$
- Runtime described by $f(n)$, for some function $f : \mathbb{N} \to \mathbb{N}$

Parameterized Algorithms

- Input of size $n \in \mathbb{N}$
- Parameter $k \in \mathbb{N}$
- Can describe the runtime by $f(k, n)$, for some function $f : (\mathbb{N}, \mathbb{N}) \to \mathbb{N}$

Definition

" O^* notation ignores polynomial factors in the input size" (COMP6741) $O^*(f(k)) \equiv O(poly(n) \cdot f(k))$

The size of the solution is often a parameter, for which Vertex Cover is a classic example:

Input
\nA graph
$$
G = (V, E)
$$
 and natural number k
\nParameter
\n k

Question

Is there a set of not more than k vertices such that $\forall e \in E, \exists v \in G$ such that v is adjacent to e .

```
Vertex Cover((V, E), k):
```
if $|E| = 0$: return True

if $k = 0$: return false

Pick an arbitrary edge uv in E

return

Best(Vertex Cover(G-u, k-1),Vertex Cover(G-v, k-1))

 QQ

Analysis

We bound the number of leaves in the search tree. Since each tree node takes polynomial time to process, the runtime is O^* (number of leaves in the search tree). Let $T(k)$ be the number of leaves in the search tree if we have budget k .

$$
\mathcal{T}(k) \leq \mathcal{T}(k-1) + \mathcal{T}(k-1).
$$

Hence since we branch into two at each point in the search tree, and there are at most k layers, we can say that there are at most $O(2^k)$ nodes, thus we have a run time bound by $O^*(2^k)$.

つひい

Literal

A literal is a boolean variable with or without a negation. (eg. $x, \neg y$)

SAT

- **•** Input: A logical formula ϕ consisting of conjunctions (\wedge), disjunctions (∨), and literals.
- Question: Is there an assignment of true and false values such that ϕ is true?

Disjunctive Clause

Input: A disjunctive clause, or simply a clause, is a set of literals connected by a disjunction (\vee) .

Conjunctive Normal Form

A formula ϕ in CNF or Conjunctive Normal Form consists of clauses separated by conjunctions.

Example

$$
(x \vee a \vee b) \wedge (\neg x \vee c \vee d) \wedge (\neg x \vee e \vee f)
$$

Assignment

If we have a formula ϕ and a set of assignments τ , we denote ϕ with the assignments in τ substituted in by $\phi[\tau]$. (And clean up stray true clauses)

Example

$$
(x \vee a \vee b) \wedge (\neg x \vee c \vee d) \wedge (\neg x \vee e \vee f)[x \leftarrow false] = (a \vee b)
$$

 Ω

◆ ロ ▶ → 何 ▶ →

SAT Class

A class of SAT is a set of SAT formulae that satisfy some property.

SAT Class Examples

A class of SAT is a set of SAT formulae that satisfy some property.

- 3-CNF: Formulae in CNF with clauses containing at most 3 variables.
- 2-CNF: Take a guess!
- 0-Val: Each clause has at least one negative literal (one variable of the form $\neg x$.) Note that if a formula $\phi \in 0 - \nu a l$, an entirely negative assignment satisfies ϕ .
- **o** The Null Formula: True

Weak Backdoors

A weak backdoor from class C_1 to C_2 for a formula ϕ is a truth assignment τ : $Var(X) \rightarrow \{0, 1\}$ such that $\phi[\tau] \in C_2$, and $\phi[\tau]$ is satisfiable.

Backdoors

We also call weak backdoors **backdoors** or simply WB.

Backdoor Algorithms

Input

A formula $\phi \in C_1$ and natural number k.

Parameter

k

Question

Does there exist a backdoor from ϕ to a formula in C_2 that consists of an assignment of no more than k variables?

Example

 $WB(3CNF, NULL)$ with parameter k asks if we can make an assignment of no more than k variables that satisfies some satisfiable formula input into the algorithm.

For our purposes, assume no clause contains a variable both negatively and positively (eg. $(x \vee \neg x)$)

Input

A collection C of subsets of a finite set S, where $|C| \le d$, and an integer k

Parameter

k

Question

Is there a subset $S' \subseteq S$ with $|S'| \leq k$ that requires S' to contain at least one element from each subset in C?

Example

$$
\{(a,b,c),(c,d,e)\}, k=1
$$

 \leftarrow \Box

в

э

 299

Parameterized Measure and Conquer

Evolutions of Parameterized Measure and Conquer have often manifested in improvements in the runtime d-Hitting-Set.

Local Search

Local Search has been applied to many problems, with SAT as a significant example.

Properties

We can use certain properties to branch less and prove the tree is smaller. For example, if there is a 2-set in 3-hitting-set, we can branch into 2 vertices.

Parameterized Measure and Conquer

Niedermeier and Rossmanith [1999] gave an early form of parameterized measure and conquer that gave an $O^*(2.27^k)$ runtime. They encoded the state in the equations

$$
T(k) = 1 + T(k - 1) + T(k - 2) + B(k - 1)
$$

$$
B(k) = 1 + B(k - 1) + T(k - 1)
$$

The 'state', i.e. whether it has a 2-set, is encoded in whether the equation is $B(k)$ or $T(k)$.

More detailed states in Fernau $(\mathit{O}^{*}(2.1788^{k}))$

Fernau [2004] did a more detailed case analysis where for d−Hitting-Set, if there are at least n 2-sets.

 $T_d^n(k) :=$ The number of leaves in the search tree with a budget of k

Note

These methods still only have the capability to take into account one type of 'measure'.

Walhström

Walhström [2007, PhD Thesis] refined an approach for exact exponential algorithms by Eppstein [2004]. He gave an approach for assigning many weights, for both parameterized and exact exponential problems. He defines states of a problem F as

$$
S(F) = k \iff F \text{ is in state } S_k.
$$

Then we can define a measure to take into account the parameter and the state for the weight

$$
f(F)=n(F)-\psi(S(F)).
$$

Input

A graph G, a natural number k.

Parameter

k

Question

Does G contain a subgraph that is a spanning tree with k leaves?

 \leftarrow \Box

 QQ

Similar Technique

k-Leaf-Spanning-Tree

This problem was extensively studied since 1988 when it was proven to be FPT. $(O^*(17k^4!)$ [1989]).

Kneis et al. [2008] proved an $O^*(4^k)$ bound, and Daligault et al. [2008] improved this to $O^*(3.72^k)$.

Fernau, Kneis et al. [2010] used the same idea as above for an exact exponential algorithm, with a measure that used the sizes of

- leaf nodes
- internal nodes
- **•** branching nodes
- floating vertices: vertices that are leaves, but not yet 'attached' to the tree
- **o** free vertices

.

 \ast) a

Randomized SAT Algorithm

Schöning [1999] gave a very simple algorithm for randomized SAT.

 QQ

SAT(A formula phi over n variables): Randomly pick an assignment for phi While phi is unsatisfied, repeat 3n times: Pick an unsatisfied clause C uniformly at random Pick a literal x from C uniformly at random 'flip' x's underlying variable to be true

 QQ

Randomized SAT Algorithm

Schöning [1999] proved that if we repeat this algorithm, the expected value of the runtime is

$$
O^*\left(\left(\frac{2(k-1)}{k}\right)^n\right),\,
$$

and thus $O^*(1.334^n)$ for $k=3$.

Derandomization General Outline

Hamming Distance

The hamming distance H between two equal length bitstrings is the number of positions in which they differ.

Hamming Ball

 $B_H(s, n)$ Denotes the set of all bitstrings no more than *n* hamming distance from string s.

General Idea

- View an assignment of true and false values as a bitstring of ones and zeroes.
- Prove that if we start at a random assignment and there exists a satisfying assignment within a Hamming Ball of some size, that we will find it within some fixed number of steps of the randomized procedure.
- **Thus, [we](#page-22-0) can bound the number of times we c[al](#page-24-0)[l](#page-22-0) [ou](#page-23-0)[r](#page-26-0)[pr](#page-13-0)[o](#page-25-0)[c](#page-26-0)[e](#page-12-0)[d](#page-13-0)[u](#page-25-0)r[e.](#page-0-0)**
Andrew Kaploun (UNSW) Backdoor Set Detection for 3CNE Formulas [Backdoor Set Detection for 3CNF Formulas](#page-0-0) 8 November 2019 24 / 41

First Derandomization

Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and Schöning [2002] gave a derandomization that gives a deterministic runtime of

$$
O^*\left(\left(\frac{2k}{k+1}\right)^n\right),\,
$$

which for $k = 3$ is $O^*(1.5^n)$.

Fastest Derandomization

Moser & Scheder [2011] Derandomized this algorithm to prove a bound of

$$
O^*\left(\left(\frac{2(k-1)}{k}\right)^{n+o(n)}\right),\,
$$

and thus $O^*(1.334^{n+o(n)})$ for $k=3.1$

WB(3CNF, 0-Val)

Raman, Shankar [2013] used a non-measure and conquer branching analysis to improve on the trivial $O^*(3^k)$ trivial bound, giving an algorithm that runs in $O^*(2.85^k)$.

Recommendation

They recommended in the conclusion that perhaps it may be a potential research problem to find a parameterized bound for WB(3CNF, Null).

Note

It can be easily intuitively observed that WB(3CNF, 2CNF) can be reduced to $3 - Hitting - Set$, which is what Misra, Ordyniak, Raman, and Szeider [2013] proved in a summary of upper and lower bounds on backdoors.

This lets us observe the relationship between $3 - Hitting - Set$ and WB(3NCF, NULL), by seeing that $WB(3CNF, 2CNF)$ is a special case of WB(3NCF, NULL) where all variables only occu[r p](#page-24-0)[os](#page-26-0)[it](#page-24-0)[iv](#page-25-0)[el](#page-26-0)[y](#page-12-0)[.](#page-13-0)

[Proposal](#page-38-0)

Ξ

 \leftarrow \Box

{ n →

 299

Definition 1.1

A literal x in a clause is referred to as an (a, b) literal if x occurs a times in ϕ , and $\neg x$ occurs b times in ϕ .

Definition 1.2

 (a, b) variables are made up of (a, b) and (b, a) literals.

Example

$$
(x \vee a \vee b) \wedge (\neg x \vee c \vee d) \wedge (\neg x \vee e \vee f)
$$

Definitions

Definition 1.4

We say that a literal of the form (a',b') is of the form

 $(a+, b')$ if $a \le a'$

$$
\bullet \ \ (a',b+)\ \ \text{if}\ \ b\leq b'
$$

 \bullet (a+, b+) if both of the above conditions hold

Note

In our algorithm, τ' will be a set containing literals that we guarantee we will not set to true.

Definition 1.4

A semi-2-clause is a 3-clause where 1 literal is in $\tau'.$

Lemma 1

If every variable is of the form $(1+,0)$, then we can solve $WB(3CNF, NULL)$ in $O^*(2.0755^k)$.

Proof.

Reduction to 3-Hitting-Set.

€⊡

Lemma 2

If every variable is of the form $(1, 1)$, then we can solve $WB(3CNF, NULL)$ in polynomial time.

Proof.

Proof. First, show that there exists a satisfying assignment of size $|\mathcal{C}|$, where C is the set of clauses of ϕ , if and only if the formula is satisfiable. For one side of the inequality, note $|\tau| > |\mathcal{C}|$ since each variable assignment can only satisfy one clause.

Then, to obtain an assignment τ such that $|\tau| \leq |\mathcal{C}|$, take any formula τ which has size greater than $|\mathcal{C}|$. While $|\tau| \leq |\mathcal{C}|$, pick an arbitrary variable from a clause that has more than 1 satisfied literal, and remove it from τ . Tovey [1984] proved there exists such an assignment, and that we can find in polynomial time.

 Ω

◆ ロ ▶ → 何 ▶ →

Trivial Reduction Rules

Intuition

The reduction rules will reduce the problem to something where we can branch better than the trivial 3-direction branching. i.e. $((1, 2+) \vee (1+, 1+) \vee (1+, 1+))$ or $((2+, 2+) \vee (y \vee z)$

Rule 1

If there exists a clause with only one literal, add the variable to τ so as to make the literal true.

Rule 2

If the same literal occurs more than once in any clause, remove the duplicate occurrences. (eg. $(\neg x \lor \neg x \lor y) \rightarrow (\neg x \lor y)$)

Rule 3

If every variable is of the form $(1, 1)$, apply lemma 2.

Andrew Kaploun (UNSW) [Backdoor Set Detection for 3CNF Formulas](#page-0-0) 8 November 2019 32/41

Rule 4

If ϕ has only variables of the form $(1,1)$ and $(1+,0)$, and we have a clause that contains a $(1, 1)$ literal and a $(1+, 0)$ literal, delete the $(1, 1)$ literal.

Rule 5

If ϕ has only variables of the form $(1, 1)$ and $(1+, 0)$, and no clauses have literals of both forms:

 \bullet If we have *l* clauses of $(1, 1)$ variables, by Lemma 2 we can call our algorithm with parameters

 $G \leftarrow \phi - \{\text{clauses with } k \text{ variables}\}, k \leftarrow k - l$

Rule 6

If a clause contains a $(1, 2+)$ literal and a $(1+, 0)$ literal, assign the $(1+, 0)$ literal true in τ .

Branching Rules & Analysis

Definition

Let $T_n(k)$ denote the runtime of the algorithm for an instance where

- \bullet The parameter is k .
- \bullet (# of 2-clauses) + (# of semi-2-clauses) > n

Rule 1

If there is a 2-clause with literals x and y , branch on

- Adding a truth assignment that makes x true to τ
- Adding a truth assignment that makes y true to τ

Analysis for Rule 1

$$
T_n(k) \leq T_{n-1}(k-1) + T_{n-1}(k-1)
$$

Example

$((2+, 2+) \vee y \vee z)$

Rule 2

If ϕ contains a clause that contains a literal x of form $(2+, 2+)$ branch on the following:

- Add an assignment to τ that makes x true.
- Add x to τ'

Analysis for Rule 2

$$
T_n(k)\leq T_{n+2}(k)+T_{n+2}(k-1)
$$

Branching Rules & Analysis

Example

$((1, 2+) \vee (1+, 1+) \vee (1+, 1+)$

Rule 3

Note that after exhaustively applying the reduction rules, if we have a $(1, 2+)$ literal x, x shares a clause with only literals of the form $(1+, 1+)$. Thus, denote our clause by $(x \vee y \vee z)$ branch on

- Add an assignment to τ that makes x true.
- Add an assignment to τ that makes y true.
- Add an assignment to τ that makes z true.

Analysis for Rule 3

$$
T_n(k) \leq T_{n+2}(k-1)+2T_{n+1}(k-1)
$$

 QQ

WB{3CNF, NULL}(phi, k, tau'):

Apply the reduction rules exhaustively

if Branching Rule 1 applies: Apply Branching Rule 1 else if Branching Rule 2 applies: Apply Branching Rule 2 else if Branching Rule 3 applies: Apply Branching Rule 3

Branching Rules & Analysis

Theorem

$$
T_n(k) \leq \max \left\{ \begin{array}{l} T_{n+2}(k) + T_{n+2}(k-1) \\ T_{n+2}(k-1) + 2T_{n+1}(k-1) \end{array} \right.
$$

Applying Rule 1,

$$
T_n(k) \leq \max \begin{cases} 4T_n(k-2) + 4T_n(k-3) \\ 4T_n(k-3) + 4T_n(k-2) \end{cases}
$$

Thus a suitable function is an exponential function with base c such that

$$
c^k \leq 4c^{k-2} + 4c^{k-3} \iff c^3 \leq 4c + 4.
$$

So we can pick $c = 2.38298$ giving us the bound

 $O^*(2.38298^k)$.

[Preliminary Results](#page-26-0)

 \leftarrow \Box

∢母→

э

Ξ

 299

WB(3CNF, NULL)

We obviously have an advantage when we have 2-clauses and semi-2-clauses. We can attempt to find other areas that give us an advantage.

Allows us to avoid a big case analysis.

WB(3CNF, 0-Val)

One possible parameter we can explore is having a set of 'unassigned' variables, a set of 'definitely not true', and a set of 'definitely not false' variables to aid in the analysis. This has worked well for problems where you have to 'pick' some number of variables, like k-leaf-spanning tree.

WB(3CNF, 0-Val)

Similar to the local search for SAT, we can start with an all 0 assignment and randomly satisfy unsatisfied clauses with a 1. Then we can apply a strategy similar to the randomized SAT algorithm.