
Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

2

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

Decentralized Data Sharing in
Web 3.0

By

Suebtrakul Kongruangkit and Yu Xia

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Computer Engineering

Submitted: December 2019
Supervisor: Dr. Helen Paik and Dr. Xiwei Xu
Student ID: z5176891 and z5212108
Topic ID: XX00

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

3

Group Member Contributions

For this thesis, Suebtrakul and Yu have been working together since the beginning of
this term. We allocated weekly meeting, shared resources, and discussed our ideas such
as designing a proposed architecture.

In this report, Suebtrakul worked on an acknowledgement, table of content, technical
background knowledge, and bibliography, while Yu were in charge of an abstraction,
introduction, general background knowledge, proposed architecture, and a project plan.
All of them were double checked and finalized by both of us at the end.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

4

Abstract

This thesis examines different methodologies and designs that aim to realize the idea of
decentralized data sharing. They all share similar goals but tackle the problem from different
perspectives. Among the available approaches, this report will mainly focus on the following
two: Social Linked Data (Solid) and Blockchain technology. This report will analyze the
similarities and differences between them and propose a design a new system that leverages
the techniques from the two communities. A case of application will also be proposed at the
end to demonstrate the underlying technical solutions and benefits of this combined system.

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

5

Acknowledgements

The work of this thesis has been inspired by Dr. Helen Paik and Dr. Sherry Xu who encourage
both of us to explore the scope of this project leading to an enhancement in our research skills
and understanding towards a concept decentralized platform. Further support and
encouragement have been given by Sin Kuang Lo and Su Yen Chia who provide us the
recommendation, advice, and information about blockchain technology. At last, we would like
to thank you our families and friends who always support us.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

6

Abbreviations

DApps Decentralized Applications

WWW World Wide Web

DOM Document Object Model

Solid Social Linked Data

WAC Web Access Control

XACML eXtensible Access Control Markup Language

PEP Policy Enforcement Point

PAP Policy Administration Point

AMs Attributes Managers

PIPs Policy Information Points

PDP Policy Decision Point

CH Context Handler

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

7

Table of Contents

GROUP MEMBER CONTRIBUTIONS ... 3
ABSTRACT ... 4
ACKNOWLEDGEMENTS ... 5
ABBREVIATIONS .. 6
TABLE OF CONTENTS .. 7
LIST OF FIGURES .. 8
LIST OF TABLES .. 9
INTRODUCTION .. 10
BACKGROUND ... 11

2.1 GENERAL BACKGROUND .. 11
2.2 TECHNICAL BACKGROUND .. 12
2.2.1 ETHEREUM ... 12
2.2.2 ELASTOS ... 13
2.2.3 SOLID ... 15
2.2.4 BLOCKCHAIN-BASED ACCESS CONTROL WITH XACML
STANDARD ... 19
2.3 PROBLEM STATEMENT .. 22

USER CASE SCENARIO AND SYSTEM DESIGN OVERVIEW 23
PROJECT PLAN .. 29
BIBLIOGRAPHY ... 31

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

viii

List of Figures

1. Solid Architecture(Andrei Vlad Sambra, 2016)

2. Web Access Control (WAC) Standard (community, 2016)

3. Example of ACL Resource for Individual and Group Authorizations (community,

2016)

4. Simple XACML Architecture (Damiano Di Francesco Maesa, 2019)

5. Architecture of Blockchain-Based Access Control Services (Damiano Di
Francesco Maesa, 2019)

6. Simplified XACML to Solidity Parser example (Damiano Di Francesco Maesa,
2019)

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

9

List of Tables

1. quick summary of Bitcoin, Ethereum, and Elastos (foundation, 2018)
2. XACML components (Damiano Di Francesco Maesa, 2019)

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

viii

Chapter 1

Introduction

The World Wide Web was originally designed as a decentralized system. However, over the

last decade or so, the Web has evolved from the static "Web 1.0" to more interactive "Web

2.0", and it is now dominated by some big service and platform providers. Personal data is

hosted by a few big service providers and the end-users lose control over their personal data.

The concept of Web 3.0 is proposed to change the Web into a fully open and decentralized

data ecosystem while recognizing the end-users as data owners with total self-governance over

their data.

There already exist some foundations and organizations experimenting on different

methodologies and trying to propose a solution to realize the idea of the idea of decentralized

data sharing. Some of them are re-implementing the whole Internet protocols and others are

building new layers on top of the existing Internet. They all share similar goals but offer

different capabilities and characteristics. This report will broadly discuss the different

approaches that are currently available, but mainly focus on two of them: Social Linked Data

(Solid) and blockchain technologies. The ultimate goal of this thesis is to propose a methodical

solution that combines the two approaches so that it can result in new and improved concepts

for decentralized data sharing system.

In this report, we will first present some background on different technologies, followed by

detailed examination on Solid and Blockchain. Design decisions and rough architecture will

be discussed in the third part. After that, a use case application will be proposed to effectively

demonstrate the underlying technical solutions. The project timeline and future plans for thesis

B and thesis C will be mentioned in the last part.

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

11

Chapter 2

Background

2.1 General Background

There exist three different phases during the evolution of the World Wide Web (WWW). In

the first stage, namely Web 1.0, there were only a few content creators and websites were

mainly consisted of static web pages without too much input from end users. Majority of the

users were simply acting as content consumers (Graham Cormode, 2008). This stage is

commonly known as the readable phase of the WWW with flat data. In late 2004, the world

“Web 2.0” was introduced the first time to denote the second phase of the WWW. At that time,

new technologies and concepts such as AJAX and Document Object Model (DOM) were

invented to help users better interact with web applications. Websites tend to incorporate strong

social components, which involves user profiles, comments and friend links (Graham

Cormode, 2008). People were encouraged to upload their own personal-generated data such as

videos or blog posts along with tags and comments. Compared with Web 1.0, Web 2.0 brings

more interactions between users and websites, and users are treated as first class entities rather

than passive content consumers.

One of the important features of Web 2.0 is that user data is stored in the backend databases of

applications, which is hosted and controlled by a few big service providers like Google Cloud

or AWS. This centralized fashion could potentially raise many problems. One of them is that

users lose control of their personal data. At the moment when they upload their pictures and

posts on social media, they cannot make decisions of who can access or share this piece of data.

Users have to sacrifice data privacy in order to use applications. Although many web

applications would normally have terms and agreements, it is still considered as a high risk to

share personal information from users’ perspective. Another issue is that those centralized web

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

12

servers and databases are not completely safe. Data leakage and database

hacking could lead to large scale security accidents. For example, one of the largest credit

agencies in the U.S, Equifax, suffered a serious data breach that affect 143 million consumers

in 2017 (Newcomb, 2017).

Due to all the potential risks that Web 2.0 might have, the concept of Web 3.0 was introduced

to address those problems during the past decade. There is no concrete definition of Web 3.0

yet, different people would have different opinions about the future web. According to Eric

Schmidt, ex Google CEO, Web 3.0 will be “applications that are pieced together, with the

characteristics that the apps are relatively small, the data is in the cloud, the apps can run on

any device, the apps are very fast and very customizable, and are distributed virally”

(Macmanus, 2007). The core idea is that data is stored in the cloud or controlled by the owner,

and data should be decoupled from applications in order to make applications more flexible,

extensible and decentralized. There are already many organizations and research teams aiming

to approach this goal, with either similar or completely different ways. In the next section of

the report, different approaches will be examined and compared with each other.

2.2 Technical Background

There are several technologies that aim to create infrastructures for decentralized data

sharing platforms. However, only a few of them has been adopted because of the

discussions in technical details about this area are still limited to researchers and

practitioners (Andrei Vlad Sambra, 2016). This section presents the technologies that

trying to provide an infrastructure for decentralized platform including Ethereum, Elastos,

and Solid. Then we add more elaborations and discussions between these technologies.

Finally, we present our problem statement for the thesis.

2.2.1 Ethereum

Ethereum is an another technology trying to approach the idea of decentralized platform

and Web 3.0 by providing an infrastructure for running decentralized applications (Dapps)

worldwide (Buterin). Decentralized applications are a piece of software that could

communicate and interact with blockchain, in order to maintain the application

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

13

itself. This process can be done by using a programmable blockchain network that could

support smart contracts, which allows people to trust their codes. To elaborate in more

detail, it provides blockchain network with a built-in Turing-complete programming

language, known as Solidity, that enables people to create a programming logic as a smart

contract and deploy it on the blockchain (Wood, 2017).

2.2.2 Elastos

Elastos is considered as one of the technologies that almost achieve the concept of Web3.

It has an almost successfully implemented decentralized ecosystem by running a virtual

machine on top of existing internet protocol. According to the original philosophy behind

Elastos’s design, it aims to recreate a new WWW (World Wide Web) system which is

influenced by a concept of blockchain. With an immutable feature of the data stored on

blockchain, it is significantly easier to maintain and control digital assets stored in this

network because all the assets are identifiable and traceable foundation (2018). In order

to achieve this goal, Elastos has to be a platform for decentralized applications (DApps),

that have no centralized server but runs on a P2P network instead.

Elastos adopts the concept of Bitcoin blockchain and Ethereum blockchain to create a

vertical implementation of the whole architecture. Bitcoin blockchain provides a trust in

data by having decentralized and immutable ledger, while Ethereum provides a trust in

code by having a smart contract supported by programmable blockchain. The smart

contracts enable users to have an automatically executed logic without a need of

intermediary or centralized server to run it. Without intermediary, many problems in the

system are solved such as data breaches or frauds. However, Ethereum infrastructure still

has some limitations (foundation, 2018).

• Speed and Storage - Storage of the blockchain is very limited and the speed is very

low since Ethereum blockchain creates a new block every 30 seconds. If users do

not pay enough amount of gas, they probably have to wait for their data to be stored

in the high congestion period.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

14

• Cost – User has to pay a fee for every single execution of the smart contract in

Ethereum infrastructure.

• Flexibility - Ethereum Virtual Machine (EVM) that is in charge of executing smart

contract is coupling with the blockchain and make them inseparable. If there is a

change on one side, it impacts the other.

• Security - even the executions of the smart contracts are on the chain, risks of being

attacked still exist because its application is still on the internet.

It is obvious that not all the features on the application can be done through smart contracts

due to the above problems. That is why most of the existing blockchain-based applications

are financial related because other areas might not be convenient because no matter

performances of machines are, it cannot speed up the Ethereum’s computation

(foundation, 2018). To summarize, existing blockchains are created for consensus-based

record keeping which have an absence of computation speed. Moreover, the blockchain

itself are not designed to store data but to record transactions, which is not possible to

have enough space in storing digital assets. This results in making Ethereum not fully

compatible to run decentralized applications.

As Elastos is a virtual machine running on top of the existing internet protocol, resulting

in being completely separated from it. The system consists of four main pillars:

1. Elastos Blockchain - this is a main blockchain that allows services to provide a

trust on the system.

2. Elastos Runtime - a lightweight operating system that requires an internet to run

virtual machine. This could prevent the services from accessing the internet

directly.

3. Elastos Carrier - it is a P2P-based decentralized platform connecting each node

together, which acts as a network layer of the system instead of internet protocol

(IP).

4. Elastos Software Development Kit (SDK) - SDK is used to access Elastos Carrier

services on the smart web.

Due to these four main pillars, Elastos becomes a platform that runs on top of its own

blockchain and connects through Elastos carrier protocol. All resources stored inside this

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

15

platform are considered as digital assets and all of them are traceable, which results in

promoting the property rights of digital contents. Additionally, Elastos has predefined

sidechains. It not only solves the scalability and speed problems in Ethereum, but also

makes the main public chain clean and simple. Apart from that, Elastos runtime, that

separates applications from the internet network by running everything on virtual

machine, brings security and prevents leaked digital contents.

Bitcoin Trustworthy Ledger

Ethereum Trustworthy Ledger + Smart Contracts

Elastos Trustworthy Ledger + Smart Contracts + Monetizable Dapps and Digital
Assets

Table 1. quick summary of Bitcoin, Ethereum, and Elastos (foundation, 2018)
With all these features, Elastos provides a decentralized infrastructure having high

scalability, security and trustworthy where all the digital assets and user actions are

traceable. However, there is one important downside. As, it has achieved many features

towards Web3.0 concept, especially being completely separated from current internet

services. This platform will not be able to be used with all services in the existing internet.

2.2.3 Solid

Solid (Social Linked Data) is a platform that has been trying to approach the idea of

decentralized web technology, especially in a data-sharing system perspective, by

decoupling user data storage from applications. It aims to provide independence of data

and mechanism of data management. This decentralized platform is implemented mainly

for social applications. In this platform, users store their data inside their online storage

space called personal online datastore (pod). It is an accessible storage service that is

deployed either on individual servers or public servers maintained by pod providers (such

as Google Drive). Each user could own more than one pod, choose between different pod

providers, and be able to switch between them since various pod providers can result in

different degrees of privacy, reliability, or legal protection(Andrei Vlad Sambra, 2016).

Figure 1 shows the differences between centralized and decentralized applications in the

data storage perspective.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

16

Figure 1. Differences between centralized and decentralized apps.

In the technological implementation perspective, solid is a decentralized framework that

sits on the top of the existing internet infrastructure. It consists of many web standards,

for example, WebID for identity system and user authentication, WAC for access control,

Linked Data Platform for data manipulation, and SPARQL for complex data retrieval. All

of them are integrated in a systematic manner, which results in offering standards-based

encouragement and more convenient to be adopted by developers.

Figure 2. Solid Architecture

The figure above shows a client-side architecture of solid. Firstly, user downloads a solid

application from its provider. Then, user’s identity profile is used in order to access their

pods. Some authentications are performed when it is necessary.

For the access control system in solid architecture, it adopts the idea of WebAccessControl

(WAC), a decentralized cross-domain access control system, to describe the access

control. There are different types of access control mode in WAC standard, including

Read, Write, Control, and Append (community, 2016). With this access control standard,

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

17

it makes the system, which is LDP based, more convenient since not only all the resources

are specified by URL, but also user identification is identified by WebID (URIs) as well

(community, 2016).

Figure 3. WebAccessControl (WAC) Standard

In the systems that use Web Access Control, they concern two factors, including agents

and what type of access they have. The agents can be either a single user or a group of

them, which are identified by WebID URIs as illustrated in the figure 1.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

18

Figure 4. Example ACL resource for individual and group authorization

The authorization can be specified either for a single resource, or a group of them

according. For a group of resources, it is suitable to have resources being able to inherit

permission from their folder/container because of the nature of web documents being

hierarchical structure (community, 2016).

As illustrated in Figure 2, the identity profile server is the part that maintains all the access

control of each pod, which can be either on a personal server or pod provider that runs the

pod. Although solid provides a robust and decentralized data sharing storage system, its

access control is still more likely to be centralized. According to the solid architecture that

allows everyone can run a solid server themselves or for others, this results in solid being

more like a federated system. However, few users will run their server while the most will

use service providers to host their pods, which means the provider will own access control

of these pods. We can consider this point as a centralized access control system that users

have to rely on one third-party company in maintaining the access control system.

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

19

2.2.4 Blockchain-Based Access Control with XACML standard

According to the existing solid architecture, it does not adopt any idea of blockchain to

provide decentralized features at all, which results in the remaining centralized access

control system as service providers act as intermediaries maintaining access controls. As

blockchain could replace a centralized server, there are some previous works (Damiano

Di Francesco Maesa, 2019) trying to bring in a concept of blockchain and make use of a

smart contract to the access control system.

(Damiano Di Francesco Maesa, 2019) proposed the idea of fully implementing

blockchain-based access control with eXtensible Access Control Markup Language

(XACML standard, defined by OASIS consortium (Standard, 2013)). XML-based

language is explicitly designed for Attributed-Based Access Control (ABAC). It allows

the user to write complex conditional policies corresponding to several attributes. For

XACML architecture details, it is illustrated in Figure 5. There are several terminologies

needed to be known.

PEP Policy Enforcement Point pairs with resources and intercepts a request.

PAP Policy Administration Point manages access control policies.

AMs Attributes Managers manage attributes, allow to retrieve, and update them.

PIPs Policy Information Points interacts with AMs

PDP Policy Decision Point use policy, access request, and attribute values as inputs and then
decide whether to provide permitted or denied access.

CH Context Handler interacts with other components.
Table 2. XACML components

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

20

Figure 5. Simple XACML architecture

In the simple XACML system, once a user sends a request to access a resource, it is

intercepted by PEP. The PEP converts the request and forwards it to CH. It extracts meta-

data about the resource to retrieve attributes needed from PIP. Once all the attributes have

been received, CH asks PDP to make a decision whether to grant or deny the access

request.

Figure 6. Architecture of the blockchain based Access Control Service.

For the proposed architecture, the figure 6 illustrates how blockchain replaces the

XACML system. Access control system and policies are replaced with smart contract

which is called smart policy. A transaction is created on the chain each time an access

request is issued, and then PAP converts the logic for XACML policy to a smart policy.

The smart policy contains all logics for executions, such as policy evaluation and attribute

retrieval. In other words, PIP and PDP are done at once inside the smart policy. Once the

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

21

blockchain has stored the smart policy, its address is stored on the smart policy table (STP)

by PAP.

Once there is an access request, PEP intercepts the request similarly to the simple XACML

system. A request is forwarded to an off-chain context handler regarding a requested

resource. It interacts with PAP and gets the smart policy address corresponding to the

resource from STP. Then the smart policy is executed to perform the rest of the process

including retrieving attributes and making decision of the request. In order to have an

updated value of the attributes for PDP to make an access decision, smart AMs is created.

It contains callable attributes retrieval function. This AMs are called by smart policy and

all attributes needed are forwarded to PDP. Lastly, the smart policy also has a logic to

disable itself, which can be called only from the owner because blockchain transaction is

immutable, but can be marked as disable (Damiano Di Francesco Maesa, 2019). With this

architecture, the whole access control can be moved into the blockchain.

Figure 7. Simplified XACML to Solidity parser example

To discuss between WAC and XACML standards, XACML could provide a higher level

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

22

of complexity of access control policy as being attributed-based access control. However,

the system that maintains it is more complicated, while WAC brings simplicity to the

platform, especially when collaborating with Solid technology that has all the resources

and entities are specified by URLs. We could adopt the idea of translating the XACML

policy into a smart policy and store it into the blockchain by applying it with WAC.

2.3 Problem Statement

Due to the solutions provided by different technologies and communities, they approach

the same problem from different angles. Ethereum comes with an infrastructure that

allows developers to create and deploy their decentralized applications to the network.

Despite this, some limitations are indicating that this platform is not practically compatible

with running Dapps for several reasons, such as computational speeds, storage spaces, and

cost constraints. Elastos solved this problem by designing a whole infrastructure with a

vertical perspective. All the resources inside the network are identifiable and traceable.

Moreover, all services inside this platform are decentralized with high scalability and

efficiency. This is the platform that can be considered as a completed web3.0 platform.

However, it aims to replace current internet platforms, not to solve it. Consequently, none

of the existing services could connect with Elastos at all. Solid approach the Web3.0

specifically only in the decentralized data system. It aims to solve the existing centralized

web platform by designing architecture with LDP, resulting in decentralized linked-data-

based data storage, in spite of an access control system, which remains a nearly centralized

system.

In this project, we focus on a decentralized data sharing system by adopting the solid

infrastructure then designing an architecture that could bring blockchain and smart

contracts in and solve the problem of a centralized access control system, while trying to

keep existing access control system (WAC).

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

23

Chapter 3

User Case Scenario and System
Design Overview

At this stage of the thesis, the aim of this report is not about proposing a unified system that

complete combines all the good parts from Solid and blockchain technology. This report will

only focus on a specific use case and will discuss how to address some common issues like

identity management and resource access control within this specific use case scenario. But

ideally, the architecture should be applied to more general cases. Further extensions and

modifications will be made in thesis B and thesis C to achieve this ideal goal. The application

that will be discussed is an assignment submission platform for university students.

In this assignment submission scenario, there exists some challenges that cannot be trivially

solved by the traditional Web 2.0 technologies or the Web 3.0 platforms that discussed above

but can be naturally addressed by some features of blockchain technology. Some of the

challenges including:

1. Students cannot gain 100% access control of their own data, even the data belongs to

themselves. Because of the university rules and regulations, student will have to give out

some level of access control back to the university. For example, university requires to

store student’s assignment file for at least one year, which cannot be simply rejected by

students.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

24

2. Students cannot submit assignment once the due date has passed.

3. Students cannot share assignments with other students.

These problems are not very hard to address using traditional Web 2.0 technology. In fact,

they can all be taken care of by some complex SQL statement or careful system design. But

applying blockchain along with smart contract could be a more concise and elegant way to

address this kind of access control problems. Below is the rough architecture of this

assignment submission system.

Figure 8. Proposed Architecture

The left half of the architecture comes from the original Solid design. Suppose user A opens a

browser and loads an application, the frontend user interface of this application will show up

on the screen. But at this point of time, data have not been filled in yet. Application would

require to access user’s pod to load some personal data, such as pictures or posts. Before this

application can go into other people’s pod and find what it needs, it must go through a pod

server provider to check whether it has the right access level. In the above design, blockchain

now replaces the original pod server. The core idea is to use an encryption algorithm to encrypt

necessary information, which can only be decrypted by the people that have the right access.

Below is a concrete example.

For instance, suppose user A wants to share a file with user B and user C. This encryption

algorithm will take the keys from both user A, B and C as a source to encrypt some important

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

25

meta-data. And this algorithm has the property that the produced text can only be decrypted

by one of the keys from the source. That is, the encrypted text can either be decrypted by user

A’s key, user B’s key or user C’s key, but not anyone else’s key. Once the encrypted text is

generated, it will be treated as a transaction and stored in blockchain. At that point, all the

peers in the network will try to decrypt the transaction using their own key. Most of them will

fail, because the text is not encrypted using their key, only A or B or C can decrypt it and

access the actual content.

The meta-data would contain all the necessary information that describes what access level B

and C will have, such as read access, write access or how long the access will last. The most

important information is the link of data that A wants to share. In this way, once B or C

decrypted the transaction, they can see the link and follow the link to retrieve actual content.

Other peers cannot decrypt the transaction thus they do not have the data link that A wants to

share.

There are different levels of access control, such as read, write, modify, append, etc. Writing,

modifying or appending operations can be classified as one single category, because they all

change the actual content. Thus, for the simplicity of this discussion, the next section will only

focus on read and write access.

For giving read access of some data to other people, the whole process is relatively easy and

straightforward, it is exactly the same as discussed above. Using that algorithm to encrypt

information so that only those people who have right access can decrypt it. Below is a diagram

that illustrates the process.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

26

Figure 9. Process of Giving Read Access

Giving write access of a file to someone is a little different from giving read access. When

multiple people trying to write some data to the same piece of data, that would sometimes

cause data race. To address this issue, duplicate files will be created and assigned to each

individual, so that they can apply write operation on their own copy. That is, when user A

wants to give write access of some file to user B, take the keys of A and B as a source, feed to

the encryption algorithm and then apply this algorithm to decrypt the original data link. The

encrypted text would be a new link that denotes to a duplicate file that allow B to write on.

Similarly, when user A wants to give write access to user C, apply the same methodology and

take the keys of A and C to produce a duplicate file, which can only be accessed and written

by C. In this way, each person would have their own isolated copy of file that allow them to

write on without potential data race. The next step is the same as above, using the key of A,

B, C and D to further encrypt the whole transaction and store in blockchain. The decryption

process is slightly different as in giving read access, for each user of B, C or D, they now need

to decrypt twice instead of once. After decrypt the whole transaction from blockchain, they

will also try to decrypt each link and find the right one that belongs to themselves.

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

27

Figure 10. Process of Giving Write Access

One other scenario is when user A wants to give read access to some users but write access to

some other users. In this case, the design would simply be a mix of two designs above.

Figure 11. Process of Giving Read and Write Access

Merge all those small details together, below is the rough architecture for the whole

assignment submission system.

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

28

Figure 12. Using Smart Contracts in Assignment Submission

Each transaction would include the meta-data that discussed above. Once this transaction is

created and appended to existing blockchain, every peer in the network will try to decrypt it

using their own key. Due to the property of the encryption algorithm, some of them would

succeed, but others would fail. Successfully decrypting the transaction means having the right

access, and this peer is the right peer that the original person wants to share data with. Smart

contract plays a role as bootstrapper and retrieve data from transactions and send to the right

pod.

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

29

Chapter 4

Project Plan

So far, the work done in thesis A is the background research of different platforms. This report

examined some existing platforms which trying to approach the idea of Web 3.0 and proposed

a new architecture. The design is not completely finalized yet at this stage, it is only a rough

prototype that could potentially work. Below is the timeline chart for future thesis research.

Table 3. Project Timeline

The plan is to first build the assignment submission application entirely based on Solid

platform, which could give us the chance to look inside the source code and gain a deeper

understanding of how Solid access control part works. This should be done during the summer

break. A concrete and fully workable application should be built before Thesis B

Decentralized Data Sharing in Web 3.0 Suebtrakul Kongruangkit, Yu Xia

30

starts, and then further discussion and improvements can be made based on that. Thesis B will

mainly consist of refactoring the codebase to adopt new access control models, which should

be relatively easy to do if the application is built with good software development

methodologies. In thesis C, the goal is to generalize the access control part. Ideally, it should

not only limit to this specific assignment submission scenario but can be applied to other use

cases as well.

Apart from the traditional access control mechanism, there exists some other interesting use

cases in our real life. One good example occurs in the doctor-patient relationship. It would be

nice if we can apply smart contract to deal with the negotiable or conditional access control

mechanism, which could give patients more personal privacy and gain more control of their

own data. This is the area that we will also explore in thesis C.

Suebtrakul Kongruangkit, Yu Xia Decentralized Data Sharing in Web 3.0

31

Bibliography

ANDREI VLAD SAMBRA, E. M., SANDRO HAWKE, MAGED ZEREBA, NICOLA GRECO, ABDURRAHMAN

GHANEM, DMITRI ZAGIDULIN, ASHRAF ABOULNAGA, TIM BERNERS-LEE 2016. Solid: A
Platform for Decentralized Social

Applications Based on Linked Data.
BUTERIN, V. Ethereum White Paper: A Next Generation Smart Contract & Decentralized Application

Platform.
COMMUNITY, S. 2016. Web Access Control (WAC) [Online]. Available: http://solid.github.io/web-

access-control-spec/ [Accessed].
DAMIANO DI FRANCESCO MAESA, P. M. 2019. Blockchain Based Access Control Services.
FOUNDATION, E. 2018. elastos white paper: Smart-web powered by blockchain.
GRAHAM CORMODE, B. K. 2008. Key differences between Web1.0 and Web2.0.
MACMANUS, R. 2007. Eric Schmidt Defines Web 3.0 [Online]. Available:

https://readwrite.com/2007/08/07/eric_schmidt_defines_web_30/ [Accessed].
NEWCOMB, A. 2017. Massive Equifax Data Breach Could Affect Half of the U.S. Population.
STANDARD, O. 2013. eXtensible Access Control Markup Language (XACML) Version 3.0 [Online].

Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
[Accessed].

WOOD, G. 2017. ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER.

